
Ideal Test Plan: 
 

● Unit Testing-  

○ aipreprocessing.py file 

■ Testing whether the script connects to the Postgres database properly. 

■ Testing queries to see whether or not they give us the data we need for 

the models.  

■ Testing model inputs 

● Again, validating the conversion of SQL queries into the 

appropriate dataframes with the correct features and dimensions 

for the model. 

■ Testing correctness of Model outputs 

● Confusion matrix and f1 scores (2 * (precisions * recall) / 

(precision + recall))  will give us an estimate if the model is 

working properly. 

● Getting average accuracy across all users for each model and 

making sure the accuracy and f1 score does not greatly vary 

between users. 

● Manually checking whether the probabilities for videos suggests a 

pattern in user behavior that lines up with the data itself (that is 

having a high probability for predicting sports videos when indeed 

the user watched a substantial amount of sports videos in their 

history). 

● Integration & Systems Testing- 



○ Testing Database connections- This was already somewhat covered in unit 

testing. 

■ Ensuring data is properly read in from the database to the script that 

trains and executes the model. 

● Description of Tools Used- 

○ Python’s unittest framework - For any methods that were explicitly declared we 

would use the unittest to evaluate their outputs. Example: The stripdays function 

in the aipreprocessing.py file. 

○ Pandas testing framework - This would probably be used in conjunction with the 

unit test framework to validate whether the dataframes that are being created 

from SQL queries are producing correct input for the ML model instances. 

○ Scikit-Learn confusion matrix/f1_score - As stated above this would be 

implemented to evaluate model performance and accuracy.  

● End User Descriptions- 

○ Tech Lead - The tech lead at City News Beat will ultimately take the code we 

have produced and integrate into their system. 

● Performance & Reliability Testing- 

○ Load Test 

■ Testing model output/model accuracy when the amount of data increases 

● That is, when the number of users, user interactions, and videos 

increase by multiple orders of magnitude does the model still 

produce coherent results and are the accuracy rates/f1-scores 

unchanged. 



■ Whether the connection to the database across the python file is slowed 

down by increasing the number of data points in the database. 

○ Regression Test 

■ Upon meeting with the tech lead, perhaps before a final acceptance test, 

making sure none of the core functionality in the software breaks when 

the structure is changed to fit the client’s architecture requirements. 

● Acceptance Testing- 

○ Meeting with the tech lead of the City News Beat project and ensuring that our 

code that we have written can integrate properly with their existing architecture. 

Namely, making sure our script can establish a proper pipeline from their user 

data to the appropriate probabilistic outputs for each user. We would also explain 

to them what the outputs mean so that they can accordingly show recommended 

videos for each user. 

 

Realistic Test Plan: 

● Unit Testing-  

○ aipreprocessing.py file 

■ Testing whether the script connects to the Postgres database properly 

(unchanged from ideal). 

■ Testing queries to see whether or not they give us the data we need for 

the models ​(unchanged from ideal). 

■ Testing model inputs 



● Again, validating the conversion of SQL queries into the 

appropriate dataframes with the correct features and dimensions 

for the model ​(unchanged from ideal). 

■ Testing correctness of Model outputs 

● Confusion matrix and f1 score (2 * (precisions * recall) / (precision 

+ recall)) will give us an estimate if the model is working properly 

(unchanged from ideal). 

● Getting average accuracy across all users for each model and 

making sure the accuracy and f1 score does not greatly vary 

between users ​(unchanged from ideal). 

● Manually checking whether the probabilities for videos suggests a 

pattern in user behavior that lines up with the data itself (that is 

having a high probability for predicting sports videos when indeed 

the user watched a substantial amount of sports videos in their 

history) ​(unchanged from ideal). 

● Integration & Systems Testing- 

○ Testing Database connections- This was already somewhat covered in unit 

testing 

■ Ensuring the data from the initial excel file is properly inserted into the 

database ​(unchanged from ideal). 

■ Ensuring data is properly read in from the database to the script that 

trains and executes the model ​(unchanged from ideal). 

● Description of Tools Used- 



○ Unit Testing in our case we have determined is not as essential for our 

application as we only have one data pipeline and eventually one output that is 

produced, at a time. Therefore a lot of our testing can be done manually, through 

print statements, or through something of the like. Not to mention, the way our 

code is structured requires that what we pass into it has the correct format (for 

example, the models require certain dimensionalities to the feature matrices and 

label arrays).  If we had a UI component to our project it would certainly require 

suite(s) of unit tests. 

○ Scikit-Learn confusion matrix/f1_score - ​This is unchanged from our ideal plan. 

We regard this as the most important testing that will occur as it tests the validity 

of what the model is outputting. 

● End User Descriptions- 

○ Tech Lead - The tech lead at City News Beat will ultimately take the code we 

have produced and integrate into their system ​(unchanged from ideal). 

● Performance & Reliability Testing- 

○ Load Test 

■ While testing the database connections and model outputs when the data 

volume increases is indeed a vital part of ensuring that our software can 

scale properly, we do not have the time or facility to generate hundreds or 

thousands of more made-up data points. 

○ Regression Test 

■ We would not be able to meet up with the tech lead of the City News Beat 

before the final code delivery to see if core functionality remains adapting 

the software to the client’s architecture. 



● Acceptance Testing- 

○ We will still try our best to meet up with our client to discuss the code we hand off 

to him. In any case, we will thoroughly document our code. 


